Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 181
Filtrar
1.
Sci Transl Med ; 16(741): eadg2841, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38569017

RESUMO

Troponin I (TnI) regulates thin filament activation and muscle contraction. Two isoforms, TnI-fast (TNNI2) and TnI-slow (TNNI1), are predominantly expressed in fast- and slow-twitch myofibers, respectively. TNNI2 variants are a rare cause of arthrogryposis, whereas TNNI1 variants have not been conclusively established to cause skeletal myopathy. We identified recessive loss-of-function TNNI1 variants as well as dominant gain-of-function TNNI1 variants as a cause of muscle disease, each with distinct physiological consequences and disease mechanisms. We identified three families with biallelic TNNI1 variants (F1: p.R14H/c.190-9G>A, F2 and F3: homozygous p.R14C), resulting in loss of function, manifesting with early-onset progressive muscle weakness and rod formation on histology. We also identified two families with a dominantly acting heterozygous TNNI1 variant (F4: p.R174Q and F5: p.K176del), resulting in gain of function, manifesting with muscle cramping, myalgias, and rod formation in F5. In zebrafish, TnI proteins with either of the missense variants (p.R14H; p.R174Q) incorporated into thin filaments. Molecular dynamics simulations suggested that the loss-of-function p.R14H variant decouples TnI from TnC, which was supported by functional studies showing a reduced force response of sarcomeres to submaximal [Ca2+] in patient myofibers. This contractile deficit could be reversed by a slow skeletal muscle troponin activator. In contrast, patient myofibers with the gain-of-function p.R174Q variant showed an increased force to submaximal [Ca2+], which was reversed by the small-molecule drug mavacamten. Our findings demonstrated that TNNI1 variants can cause muscle disease with variant-specific pathomechanisms, manifesting as either a hypo- or a hypercontractile phenotype, suggesting rational therapeutic strategies for each mechanism.


Assuntos
Doenças Musculares , Sarcômeros , Animais , Humanos , Cálcio/metabolismo , Contração Muscular , Músculo Esquelético/metabolismo , Doenças Musculares/genética , Sarcômeros/metabolismo , Troponina I/genética , Troponina I/metabolismo , Peixe-Zebra/metabolismo
2.
Stem Cell Res ; 77: 103411, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38582058

RESUMO

RYR1 variants are a common cause of congenital myopathies, including multi-minicore disease (MmD) and central core disease (CCD). Here, we generated iPSC lines from two CCD patients with dominant RYR1 missense variants that affect the transmembrane (pore) and SPRY3 protein domains (p.His4813Tyr and p.Asn1346Lys, respectively). Both lines had typical iPSC morphology, expressed canonical pluripotency markers, exhibited trilineage differentiation potential, and had normal karyotypes. Together with existing RYR1 iPSC lines, these represent important tools to study and develop treatments for RYR1-related myopathies.

3.
Stem Cell Res ; 77: 103410, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38583293

RESUMO

RYR1 variants are the most common genetic cause of congenital myopathies, and typically cause central core disease (CCD) and/or malignant hyperthermia (MH). Here, we generated iPSC lines from two patients with CCD and MH caused by dominant RYR1 variants within the central region of the protein (p.Val2168Met and p.Arg2508Cys). Both lines displayed typical iPSC morphology, uniform expression of pluripotency markers, trilineage differentiation potential, and had normal karyotypes. These are the first RYR1 iPSC lines from patients with both CCD and MH. As these are common CCD/MH variants, these lines should be useful to study these conditions and test therapeutics.

4.
Neuromuscul Disord ; 34: 32-40, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38142473

RESUMO

We describe three patients with asymmetric congenital myopathy without definite nemaline bodies and one patient with severe nemaline myopathy. In all four patients, the phenotype had been caused by pathogenic missense variants in ACTA1 leading to the same amino acid change, p.(Gly247Arg). The three patients with milder myopathy were mosaic for their variants. In contrast, in the severely affected patient, the missense variant was present in a de novo, constitutional form. The grade of mosaicism in the three mosaic patients ranged between 20 % and 40 %. We speculate that the milder clinical and histological manifestations of the same ACTA1 variant in the patients with mosaicism reflect the lower abundance of mutant actin in their muscle tissue. Similarly, the asymmetry of body growth and muscle weakness may be a consequence of the affected cells being unevenly distributed. The partial improvement in muscle strength with age in patients with mosaicism might be due to an increased proportion over time of nuclei carrying and expressing two normal alleles.


Assuntos
Doenças Musculares , Miopatias da Nemalina , Humanos , Miopatias da Nemalina/genética , Miopatias da Nemalina/patologia , Músculo Esquelético/patologia , Actinas/genética , Mutação , Doenças Musculares/genética , Aminoácidos/genética , Aminoácidos/metabolismo
5.
Stem Cell Res ; 73: 103258, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38029555

RESUMO

Central core disease (CCD) is a congenital disorder that results in hypotonia, delayed motor development, and areas of reduced oxidative activity in the muscle fibre. Two induced pluripotent stem cell (iPSC) lines were generated from the lymphoblastoid cells of a 33-year-old male with CCD, caused by a previously unreported dominant c.14145_14156delCTACTGGGACA (p.Asn4715_Asp4718del) deletion in the RYR1 gene. Both lines demonstrated typical morphology, pluripotency, trilineage differentiation, and had a normal karyotype. As the first published iPSC model of CCD caused by an RYR1 variant these lines are a potential resource for further investigation of RYR1-related myopathies in a human context.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miopatia da Parte Central , Masculino , Humanos , Adulto , Miopatia da Parte Central/genética , Miopatia da Parte Central/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Mutação
6.
Brain Commun ; 5(4): fcad208, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37621409

RESUMO

Cerebellar ataxia, neuropathy and vestibular areflexia syndrome is a progressive, generally late-onset, neurological disorder associated with biallelic pentanucleotide expansions in Intron 2 of the RFC1 gene. The locus exhibits substantial genetic variability, with multiple pathogenic and benign pentanucleotide repeat alleles previously identified. To determine the contribution of pathogenic RFC1 expansions to neurological disease within an Australasian cohort and further investigate the heterogeneity exhibited at the locus, a combination of flanking and repeat-primed PCR was used to screen a cohort of 242 Australasian patients with neurological disease. Patients whose data indicated large gaps within expanded alleles following repeat-primed PCR, underwent targeted long-read sequencing to identify novel repeat motifs at the locus. To increase diagnostic yield, additional probes at the RFC1 repeat region were incorporated into the PathWest diagnostic laboratory targeted neurological disease gene panel to enable first-pass screening of the locus for all samples tested on the panel. Within the Australasian cohort, we detected known pathogenic biallelic expansions in 15.3% (n = 37) of patients. Thirty indicated biallelic AAGGG expansions, two had biallelic 'Maori alleles' [(AAAGG)exp(AAGGG)exp], two samples were compound heterozygous for the Maori allele and an AAGGG expansion, two samples had biallelic ACAGG expansions and one sample was compound heterozygous for the ACAGG and AAGGG expansions. Forty-five samples tested indicated the presence of biallelic expansions not known to be pathogenic. A large proportion (84%) showed complex interrupted patterns following repeat-primed PCR, suggesting that these expansions are likely to be comprised of more than one repeat motif, including previously unknown repeats. Using targeted long-read sequencing, we identified three novel repeat motifs in expanded alleles. Here, we also show that short-read sequencing can be used to reliably screen for the presence or absence of biallelic RFC1 expansions in all samples tested using the PathWest targeted neurological disease gene panel. Our results show that RFC1 pathogenic expansions make a substantial contribution to neurological disease in the Australasian population and further extend the heterogeneity of the locus. To accommodate the increased complexity, we outline a multi-step workflow utilizing both targeted short- and long-read sequencing to achieve a definitive genotype and provide accurate diagnoses for patients.

7.
bioRxiv ; 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37425777

RESUMO

The factors driving initiation of pathological expansion of tandem repeats remain largely unknown. Here, we assessed the FGF14 -SCA27B (GAA)•(TTC) repeat locus in 2,530 individuals by long-read and Sanger sequencing and identified a 5'-flanking 17-bp deletion-insertion in 70.34% of alleles (3,463/4,923). This common sequence variation was present nearly exclusively on alleles with fewer than 30 GAA-pure repeats and was associated with enhanced meiotic stability of the repeat locus.

8.
Brain ; 146(12): 5235-5248, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37503746

RESUMO

The extracellular matrix (ECM) has an important role in the development and maintenance of skeletal muscle, and several muscle diseases are associated with the dysfunction of ECM elements. MAMDC2 is a putative ECM protein and its role in cell proliferation has been investigated in certain cancer types. However, its participation in skeletal muscle physiology has not been previously studied. We describe 17 individuals with an autosomal dominant muscular dystrophy belonging to two unrelated families in which different heterozygous truncating variants in the last exon of MAMDC2 co-segregate correctly with the disease. The radiological aspect of muscle involvement resembles that of COL6 myopathies with fat replacement at the peripheral rim of vastii muscles. In this cohort, a subfascial and peri-tendinous pattern is observed in upper and lower limb muscles. Here we show that MAMDC2 is expressed in adult skeletal muscle and differentiating muscle cells, where it appears to localize to the sarcoplasm and myonuclei. In addition, we show it is secreted by myoblasts and differentiating myotubes into to the extracellular compartment. The last exon encodes a disordered region with a polar residue compositional bias loss of which likely induces a toxic effect of the mutant protein. The precise mechanisms by which the altered MAMDC2 proteins cause disease remains to be determined. MAMDC2 is a skeletal muscle disease-associated protein. Its role in muscle development and ECM-muscle communication remains to be fully elucidated. Screening of the last exon of MAMDC2 should be considered in patients presenting with autosomal dominant muscular dystrophy, particularly in those with a subfascial radiological pattern of muscle involvement.


Assuntos
Distrofias Musculares , Adulto , Humanos , Distrofias Musculares/genética , Músculo Esquelético/metabolismo , Proteínas da Matriz Extracelular
9.
Neuromuscul Disord ; 33(6): 484-489, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37209493

RESUMO

Pathogenic variants in DNMT3A are most commonly associated with Tatton-Brown-Rahman Syndrome (TBRS), but includes other phenotypes such as Heyn-Sproul-Jackson syndrome and acute myeloid leukemia (AML). We describe a patient presenting to the neuromuscular clinic with a de novo missense variant in DNMT3A where the striking clinical feature is that of a congenital myopathy with associated episodes of rhabdomyolysis, severe myalgias and chest pain along with phenotypic features associated with TBRS. Muscle biopsy showed minor myopathic features and cardiac investigations revealed mildly impaired bi-ventricular systolic function. We confirmed the DNA methylation profile matched haplo-insufficient TBRS cases, consistent with a loss of methyltransferase activity. Our report emphasizes the phenotypic overlap of patients with syndromic disorders presenting to neuromuscular clinics and limitations of gene panels in establishing a molecular diagnosis.


Assuntos
Anormalidades Múltiplas , Deficiência Intelectual , Doenças Musculares , Rabdomiólise , Humanos , DNA (Citosina-5-)-Metiltransferases/genética , DNA Metiltransferase 3A , Mutação , Anormalidades Múltiplas/genética , Deficiência Intelectual/genética , Fenótipo , Rabdomiólise/diagnóstico , Rabdomiólise/genética
10.
Neuromuscul Disord ; 33(2): 161-168, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36634413

RESUMO

Primary acetylcholine receptor deficiency is the most common subtype of congenital myasthenic syndrome, resulting in reduced amount of acetylcholine receptors expressed at the muscle endplate and impaired neuromuscular transmission. AChR deficiency is caused mainly by pathogenic variants in the ε-subunit of the acetylcholine receptor encoded by CHRNE, although pathogenic variants in other subunits are also seen. We report the clinical and molecular features of 13 patients from nine unrelated kinships with acetylcholine receptor deficiency harbouring the CHRNA1 variant NM_001039523.3:c.257G>A (p.Arg86His) in homozygosity or compound heterozygosity. This variant results in the inclusion of an alternatively-spliced evolutionary exon (P3A) that causes expression of a non-functional acetylcholine receptor α-subunit. We compare the clinical findings of this group to the other cases of acetylcholine receptor deficiency within our cohort. We report differences in phenotype, highlighting a predominant pattern of facial and distal weakness in adulthood, predominantly in the upper limbs, which is unusual for acetylcholine receptor deficiency syndromes, and more in keeping with slow-channel syndrome or distal myopathy. Finally, we stress the importance of including alternative exons in variant analysis to increase the probability of achieving a molecular diagnosis.


Assuntos
Síndromes Miastênicas Congênitas , Receptores Nicotínicos , Humanos , Receptores Colinérgicos/genética , Receptores Colinérgicos/metabolismo , Síndromes Miastênicas Congênitas/genética , Síndromes Miastênicas Congênitas/patologia , Éxons/genética , Fenótipo , Mutação , Receptores Nicotínicos/genética
11.
N Engl J Med ; 388(2): 128-141, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36516086

RESUMO

BACKGROUND: The late-onset cerebellar ataxias (LOCAs) have largely resisted molecular diagnosis. METHODS: We sequenced the genomes of six persons with autosomal dominant LOCA who were members of three French Canadian families and identified a candidate pathogenic repeat expansion. We then tested for association between the repeat expansion and disease in two independent case-control series - one French Canadian (66 patients and 209 controls) and the other German (228 patients and 199 controls). We also genotyped the repeat in 20 Australian and 31 Indian index patients. We assayed gene and protein expression in two postmortem cerebellum specimens and two induced pluripotent stem-cell (iPSC)-derived motor-neuron cell lines. RESULTS: In the six French Canadian patients, we identified a GAA repeat expansion deep in the first intron of FGF14, which encodes fibroblast growth factor 14. Cosegregation of the repeat expansion with disease in the families supported a pathogenic threshold of at least 250 GAA repeats ([GAA]≥250). There was significant association between FGF14 (GAA)≥250 expansions and LOCA in the French Canadian series (odds ratio, 105.60; 95% confidence interval [CI], 31.09 to 334.20; P<0.001) and in the German series (odds ratio, 8.76; 95% CI, 3.45 to 20.84; P<0.001). The repeat expansion was present in 61%, 18%, 15%, and 10% of French Canadian, German, Australian, and Indian index patients, respectively. In total, we identified 128 patients with LOCA who carried an FGF14 (GAA)≥250 expansion. Postmortem cerebellum specimens and iPSC-derived motor neurons from patients showed reduced expression of FGF14 RNA and protein. CONCLUSIONS: A dominantly inherited deep intronic GAA repeat expansion in FGF14 was found to be associated with LOCA. (Funded by Fondation Groupe Monaco and others.).


Assuntos
Ataxia Cerebelar , Expansão das Repetições de DNA , Íntrons , Humanos , Austrália , Canadá , Ataxia Cerebelar/genética , Ataxia Cerebelar/patologia , Ataxia de Friedreich/genética , Ataxia de Friedreich/patologia , Íntrons/genética , Expansão das Repetições de DNA/genética
12.
Hum Mol Genet ; 32(7): 1127-1136, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36322148

RESUMO

Nemaline myopathy 8 (NEM8) is typically a severe autosomal recessive disorder associated with variants in the kelch-like family member 40 gene (KLHL40). Common features include fetal akinesia, fractures, contractures, dysphagia, respiratory failure and neonatal death. Here, we describe a 26-year-old man with relatively mild NEM8. He presented with hypotonia and bilateral femur fractures at birth, later developing bilateral Achilles' contractures, scoliosis, and elbow and knee contractures. He had walking difficulties throughout childhood and became wheelchair bound from age 13 after prolonged immobilization. Muscle magnetic resonance imaging at age 13 indicated prominent fat replacement in his pelvic girdle, posterior compartments of thighs and vastus intermedius. Muscle biopsy revealed nemaline bodies and intranuclear rods. RNA sequencing and western blotting of patient skeletal muscle indicated significant reduction in KLHL40 mRNA and protein, respectively. Using gene panel screening, exome sequencing and RNA sequencing, we identified compound heterozygous variants in KLHL40; a truncating 10.9 kb deletion in trans with a likely pathogenic variant (c.*152G > T) in the 3' untranslated region (UTR). Computational tools SpliceAI and Introme predicted the c.*152G > T variant created a cryptic donor splice site. RNA-seq and in vitro analyses indicated that the c.*152G > T variant induces multiple de novo splicing events that likely provoke nonsense mediated decay of KLHL40 mRNA explaining the loss of mRNA expression and protein abundance in the patient. Analysis of 3' UTR variants in ClinVar suggests variants that introduce aberrant 3' UTR splicing may be underrecognized in Mendelian disease. We encourage consideration of this mechanism during variant curation.


Assuntos
Contratura , Miopatias da Nemalina , Masculino , Recém-Nascido , Humanos , Criança , Adolescente , Adulto , Miopatias da Nemalina/genética , Regiões 3' não Traduzidas/genética , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Sítios de Splice de RNA/genética , RNA Mensageiro , Contratura/genética , Mutação
13.
J Pers Med ; 12(11)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36579509

RESUMO

Reproductive genetic carrier screening (RGCS) provides people with information about their chance of having children with autosomal recessive or X-linked genetic conditions, enabling informed reproductive decision-making. RGCS is recommended to be offered to all couples during preconception or in early pregnancy. However, cost and a lack of awareness may prevent access. To address this, the Australian Government funded Mackenzie's Mission­the Australian Reproductive Genetic Carrier Screening Project. Mackenzie's Mission aims to assess the acceptability and feasibility of an easily accessible RGCS program, provided free of charge to the participant. In study Phase 1, implementation needs were mapped, and key study elements were developed. In Phase 2, RGCS is being offered by healthcare providers educated by the study team. Reproductive couples who provide consent are screened for over 1200 genes associated with >750 serious, childhood-onset genetic conditions. Those with an increased chance result are provided comprehensive genetic counseling support. Reproductive couples, recruiting healthcare providers, and study team members are also invited to complete surveys and/or interviews. In Phase 3, a mixed-methods analysis will be undertaken to assess the program outcomes, psychosocial implications and implementation considerations alongside an ongoing bioethical analysis and a health economic evaluation. Findings will inform the implementation of an ethically robust RGCS program.

14.
Genome Biol ; 23(1): 257, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36517892

RESUMO

Expansions of short tandem repeats (STRs) cause many rare diseases. Expansion detection is challenging with short-read DNA sequencing data since supporting reads are often mapped incorrectly. Detection is particularly difficult for "novel" STRs, which include new motifs at known loci or STRs absent from the reference genome. We developed STRling to efficiently count k-mers to recover informative reads and call expansions at known and novel STR loci. STRling is sensitive to known STR disease loci, has a low false discovery rate, and resolves novel STR expansions to base-pair position accuracy. It is fast, scalable, open-source, and available at: github.com/quinlan-lab/STRling .


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Repetições de Microssatélites , Análise de Sequência de DNA
15.
Int J Mol Sci ; 23(19)2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36233295

RESUMO

Nemaline myopathy (NM), a structural congenital myopathy, presents a significant clinical and genetic heterogeneity. Here, we compiled molecular and clinical data of 30 Brazilian patients from 25 unrelated families. Next-generation sequencing was able to genetically classify all patients: sixteen families (64%) with mutation in NEB, five (20%) in ACTA1, two (8%) in KLHL40, and one in TPM2 (4%) and TPM3 (4%). In the NEB-related families, 25 different variants, 11 of them novel, were identified; splice site (10/25) and frame shift (9/25) mutations were the most common. Mutation c.24579 G>C was recurrent in three unrelated patients from the same region, suggesting a common ancestor. Clinically, the "typical" form was the more frequent and caused by mutations in the different NM genes. Phenotypic heterogeneity was observed among patients with mutations in the same gene. Respiratory involvement was very common and often out of proportion with limb weakness. Muscle MRI patterns showed variability within the forms and genes, which was related to the severity of the weakness. Considering the high frequency of NEB mutations and the complexity of this gene, NGS tools should be combined with CNV identification, especially in patients with a likely non-identified second mutation.


Assuntos
Miopatias da Nemalina , Miotonia Congênita , Brasil , Humanos , Proteínas Musculares/genética , Músculo Esquelético , Mutação , Miopatias da Nemalina/genética
16.
Mol Genet Metab ; 137(1-2): 62-67, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35926322

RESUMO

BACKGROUND: Beta-ureidopropionase deficiency, caused by variants in UPB1, has been reported in association with various neurodevelopmental phenotypes including intellectual disability, seizures and autism. AIM: We aimed to reassess the relationship between variants in UPB1 and a clinical phenotype. METHODS: Literature review, calculation of carrier frequencies from population databases, long-term follow-up of a previously published case and reporting of additional cases. RESULTS: Fifty-three published cases were identified, and two additional cases are reported here. Of these, 14 were asymptomatic and four had transient neurological features; clinical features in the remainder were variable and included non-neurological presentations. Several of the variants previously reported as pathogenic are present in population databases at frequencies higher than expected for a rare condition. In particular, the variant most frequently reported as pathogenic, p.Arg326Gln, is very common among East Asians, with a carrier frequency of 1 in 19 and 1 in 907 being homozygous for the variant in gnomAD v2.1.1. CONCLUSION: Pending the availability of further evidence, UPB1 should be considered a 'gene of uncertain clinical significance'. Caution should be used in ascribing clinical significance to biochemical features of beta-ureidopropionase deficiency and/or UPB1 variants in patients with neurodevelopmental phenotypes. UPB1 is not currently suitable for inclusion in gene panels for reproductive genetic carrier screening. SYNOPSIS: The relationship between beta-ureidopropionase deficiency due to UPB1 variants and clinical phenotypes is uncertain.


Assuntos
Transtornos dos Movimentos , Erros Inatos do Metabolismo da Purina-Pirimidina , Humanos , Encefalopatias/diagnóstico , Encefalopatias/genética , Transtornos dos Movimentos/diagnóstico , Transtornos dos Movimentos/genética , Fenótipo , Erros Inatos do Metabolismo da Purina-Pirimidina/diagnóstico , Erros Inatos do Metabolismo da Purina-Pirimidina/genética , Amidoidrolases/genética
17.
Neuropathol Appl Neurobiol ; 48(7): e12846, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35962550

RESUMO

AIMS: Dysferlinopathy is an autosomal recessive muscular dystrophy, caused by bi-allelic variants in the gene encoding dysferlin (DYSF). Onset typically occurs in the second to third decade and is characterised by slowly progressive skeletal muscle weakness and atrophy of the proximal and/or distal muscles of the four limbs. There are rare cases of symptomatic DYSF variant carriers. Here, we report a large family with a dominantly inherited hyperCKaemia and late-onset muscular dystrophy. METHODS AND RESULTS: Genetic analysis identified a co-segregating novel DYSF variant [NM_003494.4:c.6207del p.(Tyr2070Metfs*4)]. No secondary variants in DYSF or other dystrophy-related genes were identified on whole genome sequencing and analysis of the proband's DNA. Skeletal muscle involvement was milder and later onset than typical dysferlinopathy presentations; these clinical signs manifested in four individuals, all between the fourth and sixth decades of life. All individuals heterozygous for the c.6207del variant had hyperCKaemia. Histological analysis of skeletal muscle biopsies across three generations showed clear dystrophic signs, including inflammatory infiltrates, regenerating myofibres, increased variability in myofibre size and internal nuclei. Muscle magnetic resonance imaging revealed fatty replacement of muscle in two individuals. Western blot and immunohistochemical analysis of muscle biopsy demonstrated consistent reduction of dysferlin staining. Allele-specific quantitative PCR analysis of DYSF mRNA from patient muscle found that the variant, localised to the extreme C-terminus of dysferlin, does not activate post-transcriptional mRNA decay. CONCLUSIONS: We propose that this inheritance pattern may be underappreciated and that other late-onset muscular dystrophy cases with mono-allelic DYSF variants, particularly C-terminal premature truncation variants, may represent dominant forms of disease.


Assuntos
Disferlina , Distrofia Muscular do Cíngulo dos Membros , Distrofias Musculares , Humanos , Disferlina/genética , Proteínas de Membrana/genética , Proteínas Musculares/genética , Músculo Esquelético/patologia , Distrofia Muscular do Cíngulo dos Membros/genética , Linhagem , Masculino , Feminino
18.
Stem Cell Res ; 63: 102829, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35728439

RESUMO

Variants in the ACTA1 gene are a common cause of nemaline myopathy (NM); a muscle disease that typically presents at birth or early childhood with hypotonia and muscle weakness. Here, we generated an induced pluripotent stem cell line (iPSC) from lymphoblastoid cells of a 3-month-old female patient with intermediate NM caused by a dominant ACTA1 variant (c.515C > A (p.Ala172Glu)). iPSCs showed typical morphology, expressed pluripotency markers, demonstrated trilineage differentiation potential, and had a normal karyotype. This line complements our previously published ACTA1 iPSC lines derived from patients with typical and severe NM.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miopatias da Nemalina , Actinas/genética , Actinas/metabolismo , Pré-Escolar , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Lactente , Recém-Nascido , Músculo Esquelético/metabolismo , Mutação , Miopatias da Nemalina/genética
19.
Stem Cell Res ; 63: 102830, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35728440

RESUMO

Nemaline myopathy (NM) is a congenital skeletal muscle disorder that typically results in muscle weakness and the presence of rod-like structures (nemaline bodies) in the sarcoplasma and/or in the nuclei of myofibres. Two induced pluripotent stem cell (iPSC) lines were generated from the lymphoblastoid cells of a 1-month-old male with severe NM caused by a homozygous recessive mutation in the ACTA1 gene (c.121C > T, p.Arg39Ter). The iPSC lines demonstrated typical morphology, expressed pluripotency markers, exhibited trilineage differentiation potential and displayed a normal karyotype. These isogenic lines represent a potential resource to investigate and model recessive ACTA1 disease in a human context.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miopatias da Nemalina , Actinas/genética , Actinas/metabolismo , Homozigoto , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Lactente , Masculino , Músculo Esquelético/metabolismo , Mutação , Miopatias da Nemalina/genética , Miopatias da Nemalina/metabolismo
20.
Hum Mutat ; 43(9): 1216-1223, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35485770

RESUMO

Neuregulin 1 signals are essential for the development and function of Schwann cells, which form the myelin sheath on peripheral axons. Disruption of myelin in the peripheral nervous system can lead to peripheral neuropathy, which is characterized by reduced axonal conduction velocity and sensorimotor deficits. Charcot-Marie-Tooth disease is a group of heritable peripheral neuropathies that may be caused by variants in nearly 100 genes. Despite the evidence that Neuregulin 1 is essential for many aspects of Schwann cell development, previous studies have not reported variants in the neuregulin 1 gene (NRG1) in patients with peripheral neuropathy. We have identified a rare missense variant in NRG1 that is homozygous in a patient with sensory and motor deficits consistent with mixed axonal and de-myelinating peripheral neuropathy. Our in vivo functional studies in zebrafish indicate that the patient variant partially reduces NRG1 function. This study tentatively suggests that variants at the NRG1 locus may cause peripheral neuropathy and that NRG1 should be investigated in families with peripheral neuropathy of unknown cause.


Assuntos
Doença de Charcot-Marie-Tooth , Neuregulina-1 , Animais , Axônios , Doença de Charcot-Marie-Tooth/genética , Humanos , Bainha de Mielina , Neuregulina-1/genética , Células de Schwann , Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...